
ISSN: 2456-9186, Vol. I, Issue. II, Sept-2017

SUDHIR K MISHRA 4

वागथᭅः

(An International Journal of Sanskrit Research)

Kraka analysis of complicated Sanskrit sentences

Sudhir K Mishra
Pune

sudhirkumarmishra@gmail.com

Abstract: The present paper is case studies of kraka analysis of problematic kraka situations of the following types –

 clipped sentences like ‘gham’ (in ‘bhavn kutra gacchati ? gham)
 bigger noun phrases like sequences of adj1 adj2… adjn N with same vibhaktis (as in sundara sula nipua ca blaka)

identifying the kraka in blaka only and not in other adjectives is a problem because we do not store nouns in the lexicon
 identifying lexical semantics and krakas based on them (for example, the rule ‘gati

buddhipratyayavasnrthaabdakarmkarmakmaikart sa au’[P 1.4.52] says that a particular kraka will apply in the sense of
these words)

 identification of abhihita and anabhihita (expressed and un-expressed)
 identification of the locus of the verb
 identification of the sense of tdarthya

krakas play an important role in formation and analysis of sentences. Without complete analysis of kraka, a sentence can not be analyzed.
Analysis of Sanskrit sentences at both syntactic and semantic levels together through a computational model is challenging. By evolving a
mechanism for kraka interpretation of complicated Sanskrit sentences, the authors here present a case for using such systems for Sanskrit to
Indian languages Machine Translation (MT). The overall aim is to test the algorithm on potentially problematic sentences to see if there is a
need to further tuning the algorithm. This system is based on Pini and Ktyyana kraka formulations

Key Words: Krakas, Aādhyāyī.

I. INTRODUCTION

Sanskrit is a highly inflected and relatively free word order
language. Therefore, identifying the constituents from the
place cues (as in western languages) is not possible. In
Sanskrit, the case endings of padas assign syntactic-semantic
relations to the constituents of sentence with verb. In this
work, the vibhakti endings and associated kraka are analyzed
for sentence comprehension. This approach is comparable with
the broad class of vibhakti and kraka based grammars such as
Pini and later grammarians. For kraka analysis, first
priority is identification of verb in sentence. Pini discusses
kraka [P 1.4.23- P 1.4.54] and vibhakti [P 2.3.1-P 2.3.73.) in
different chapters of Adhyy. Kraka is the underlying
sense of the vibhaktis and vibhaktis are the markers of kraka.
Krakas are not compulsory for each pada in a sentence, but
vibhaktis are. So, the basic problem is correct identification of
kraka and vibhakti in a sentence. The task becomes slightly

easier, if the verb is correctly identified and analyzed because
many kraka rules in Pini assume the verb in the center.
Secondly, except kart kraka all other krakas are expressed
only if they are un-expressed (unabhihita) by any other means
(like ti, kt, taddhita, samsa or nipta). If they are expressed
(abhihita), they show as kart kraka. The present work
assumes sandhi and samsa free input text. The work on kt,
taddhita, samsa identification is in initial stage at this point.

Kraka processing is done at three levels – structural,
syntax and semantic. On the surface level, the identification of
verb, subanta, upasarga and avyaya etc. will be done first, and
then the verb and kraka semantics is analyzed.

II. KAS MODULES

The present research is actually being implemented as an
online java servlet engine with relational database as backend.
The system called Kraka Analyzer for Sanskrit (KAS) has
the following modules –

वागथᭅः(An International Journal of Sanskrit Research) ISSN: 2456-9186, Vol. I, Issue. II, Sept-2017

SUDHIR K MISHRA 5

 the KAS engine.
 tianta identification
 subanta identification
 kraka identification and analysis

Pini kraka formulations are very complex and involve
balanced interplay of morphological information, verb
semantics, and sentence level syntax and semantics. The input
text (according to the assumed specifications) will be checked
for consistency by the KAS engine. If the consistency check
succeeds, the tianta identification is done with the help of a
database of verb forms of commonly found verbs. This
module will tag the verb for basic TAM, argument structure,
upasargas, nma-dhatu, derived forms, vcya etc. [Ref 11].
The subanta module will identify the case markers with the
help of the vibhakti Knowledge Base (KBv). The KBv stores
the primitive vibhakti morphemes and its allomorphs, and also
possible exceptions. To make sure that KAS does not return
wrong results for upapada vibhaktis like parita ka
(around ka) or other avyaya-subanta combination specially
described by Pini, this module will mark the constituent as
suspect for special exception processing according to kraka
formulations. The kraka module (KBk - a comprehensive
database of kāraka formulations of Pini, Patajali and
Ktyyana) will search for kraka rules for each vibhakti
marked constituent and generate analysis for each kraka -
vibhakti situation in the sentence.

In case the KBv returns ambiguous results, the expectancy
analysis of the verbs stored in the Verb Knowledge Base
(KBV) as sakarmaka, akarmaka, dvikarmaka, parasmai,
tmane, ubhaya, kart-vcya, karma-vcya, bhva-vcya etc.
will come in to disambiguate. The details for some of the
components and problematic kraka situations are as follows –

A. Tianta identification

Sanskrit verb forms are very complex. They carry tense,
aspect, person, number information all in the inflection forms.
Besides, they can also contain derivations containing semantic
informations like causation, desire, repitition, negation etc.
Therefore, it becomes very difficult to split out the verb and
separate the verb root and complex information units encoded
in it. Sanskrit has about 2000 verb roots classified in 10
morphological and semantic classes called gaas, and can also
be further sub-classified as normal forms (without any of the
12 derivational affixes – 11 listed by Pāini [P 3.1.32], 1 more
‘kvip’ added by Kātyāyana), and the derived forms with
ijanta (causative – ic), sannata (expressing desire – san,
kyac, kāmyac, kvip, kya, kya,i, yak, āy and iya) , yaanta
(duplicated – ya and yaluant). Then these can have
ātmane and parasmai forms in 10 lakāras and 3 x 3 person
and number combinations. Then these can also be potentially
prefixed with 22 prefixes. Finally there could be in-numerable
nāmadhātus (nominalized verbs).

We have stored all the verb roots from Pāini’s dhātu-
pātha (DP) with semantic class and other syntactic
information. The backend structure is as follows –

dhtu
id dhtu artha gaa pada

s/
a/
v

ak./
sa./
dv

1 bh sattym bhvdi p s ak
2 edha vddhou bhvdi p s ak
3 spardha saghare bhvdi p s sa

4 gdh
pratihlipsayo-
rgranthe bhvdi

p
s

sa
5 bdh viloane bhvdi p s sa

6 nth
ycopatpaiva-
ryu bhvdi

p
s

dv
Table 1

Since most of the DP dhātus are not found in literature, we

have stored the forms for only 550 commonly occurring
Sanskrit verb roots. The storage structure snippet in the
backend is as follows –

dhtu
_id 1.1.1 1.1.2 1.1.3 1.2.1 1.2.2
01 bhavati bhavta bhavanti bhavasi bhavata
32 yauti yuta yuvanti yaui yutha
39 rauti ruta ravanti raui ruth
74 nauti nauta naunti nautaasi nautastha
59 kauti kauta konti kaui kautha
76 snauti snauta snauvanti snaui snautha
97 uauti uuta uruvanti uraushi urutha

Table 2

a. tianta based kraka complications

In this section, we are presenting some problems with
respect to the tianta identification –

 In-complete sentences
sentences like gham which are answers to a question
like bhavna kutra gacchati ? or any other similar
half or incomplete sentences will create problem in
Kraka analysis because the system will mark them
as having no kraka at all (as there is no verb). But
such sentences do have verbs in the underlying
representation. Therefore, the problem before us is to
first complete these sentences with a suitable verb
according to the context and then start kraka
analysis. Such single-word sentences could be verbs
as well or ambiguous entities as in paam ka
gacchati ? rma. In this instance, rma may be a
noun or a verb form of √r. The KAS presently is
not considering such sentences.

 Dvikarmaka (di-transitive) verbs in certain senses
In such cases (as hinted in P 1.4.51 and later
explained by vttikras) the dvikarmaka verbs in 16
semantic categories mark krakas optionally. For
instance, in the sentences ‘gm paya dogdhi’ and
‘go paya dogdhi’, the krakas are expressed
differently in the same meaning. The optional use of
kraka in such cases depends on user vivak.

वागथᭅः(An International Journal of Sanskrit Research) ISSN: 2456-9186, Vol. I, Issue. II, Sept-2017

SUDHIR K MISHRA 6

b. Upasarga based kraka complication

[P 1.4.58] defines a class of 22 niptas (pra, pr, apa, sam,
anu, ava, nis, nir, dus, dur, vi, , ni, adhi, api, ati, su, ut,
abhi, prati, pari and upa) listed in prdigaa. They are
termed upasarga if they are used with a verb and play an
important role in the identification of kraka. [P 1.4.46] says if
‘adhi’ upasarga is used before √, √sth and √s, then the
locus of verb gets karma samj, as in adhiete adhitihati
adhyste v vaikuham hari Some of these [P1.4.83 -
P1.4.97] are discussed separately as karmapravacaniya with
different vibhakti assignment rules. For instance, when ‘upa’
implies inferiority it is termed karma, else if used in the sense
of superiority then seventh vibhakti is used [P 1.4.87]. All such
cases are stored separately as shown in the following table–

upasarga/
karmapravacaniy
a

dhtu condition kraka/vibhakti

adhi ,
sth,
s

u + v =
locus of

verb

karman

upa, anu, adhi, vas u + v =
locus of

verb

karman

pari, apa, fifth vibhakti
par ji unbearable

thing
fifth vibhakti

upa inferiority second vibhakti
upa superiority seventh

vibhakti

Table 3

c. Vcya based kraka complication

In Sanskrit there are three voices and in every voice
sentence structure is different, for instance-

kart vcya subject in pratham vibhakti + object in
dvitiy vibhakti + verb according to subject
karma vcya subject in tty vibhakti + object in
pratham vibhakti + verb according to object
bhva vcya subject in tty vibhakti + no object
 + verb in third per, singular

this structure can help in solving the problem of ambiguity on
surface level. The required information for this is stored in
table 2 as shown above.

d. Semantics based kraka complication

 the problem with √sph
in the case of √sph, if the most desired object is
marked karma by [P1.4.49], however, the other less
desired objects are marked sampradna [P1.4.36]. The
KAS will provide both analyses. Such specific
information is separately stored in the verb database.

 the problem with √nth
In the use of √nth , if the object of desire can
optionally be marked by genitive marker [P 2.3.55] as

in the sentence sarpio nthate (genitive) or
mavakam nthate (accusative). All such cases are
stored separately as shown in the following table-

Upa-
sarg
a

Karmapra-
vacaniya

dhtu artha condition kraka vibhakti rule

 nth ah 2.3.55
 gati jn subject

of
ijanta

karman 1.4.52

upa vas not
eating

locus of
verb

adhikaraa vrtika

 anu tty dvitiy 1.4.85

Table 4

B. Subanta identification

Correct vibhakti identification in nominal forms is a must
for kraka analysis. We are storing all possible allomorphs of
the 21 (7x3) nominal vibhaktis in Sanskrit [P 4.1.2] as shown
in the following table (for ‘a’ ending masculine nouns) -

vibhakti anta li 1.1 1.2 1.3

prathamā a P a au ā
prathamā ā P ā au ā
prathamā i P i aya
prathamā P yau ya
prathamā u P u ava
prathamā P uvo uva
prathamā P ā ārau/arau āra/ara

table 5

There may be cases of ambiguity in some vibhaktis like
prathamā, dvityā duals, ttyā, caturth, pacam plurals and
also in ah, saptam duals.

a. Avyaya based kraka complication

In case of indeclinable being used in conjunction with
verbs, different krakas are used as in gurum namaskaroti
(karma), but if it not used otherwise, then the default kraka
will be used as in gurave nama (sampradna). This is
discussed as upa-pada-vibhakti in Pini. All such cases are
stored separately as shown in the following table-

avyaya kraka/vibhakti exception rule
nama caturth dvitiy 2.3.16
nn dvitiy, tty,

pacam
 2.3.32

ubhayat dvitiy vrtika
abhita dvitiy vrtika
vin dvitiy, tty,

pacam
 2.3.32

Table 6

C. Kraka based complications

There are certain cases where the desire of the agent
determines the kraka. For example in case of more than one
objects in a sentence, the most desired is karma according to

वागथᭅः(An International Journal of Sanskrit Research) ISSN: 2456-9186, Vol. I, Issue. II, Sept-2017

SUDHIR K MISHRA 7

Pini [P 1.4.50], however the other less desired are also
termed karma. So, in sentences with such situations, the KAS
should be able to differentiate between such karmas. For
instance, in the sentence ‘grmam gacchan tam spati’
(‘while going to village (he) touches straw’) agent’s most
desired goal is to go to village, and un-desired object is
accidentally touching the straw (which he happens to trample
on). Here both are marked object for different reasons. So, the
KAS should be able to provide this analysis.

a. Mapping based Kraka complication

If any noun has n number of adjectives then the correct
identification of the head noun becomes very challenging in
Sanskrit as all of them will have the same vibhaktis. Since
identifying the head noun may be important for kraka
analysis in cases of semantics bases assignments, this poses a
big problem for any computer bases kraka system. This
becomes more challenging when the position of the head noun
cannot be predicted due to relatively free word order within
adj-n sequence in Sanskrit.

III. SAMPLE ILLUSTRATION

The following examples illustrate the proposed kraka
processing of Sanskrit sentences by applying on Pini and
Ktyyana kraka formulations and data resources-

Input => makaradhvajena nithe pryaa kmina
balavaduttpyante.

Module 1: uttpyante {([ut] Pre [tap] VR [yak] affix)
la_pra_bahu}

Module 2: karma vcya

Module 3: makaradhvajena (tri) nithe (sap) pryaa (avy)
kmina (pra) balavad
 (pra)

Module 4: pryaa (avyaya)

Module 5: makaradhvajena (2.3.18) nithe (2.3.7) pryaa
(avyaya) kmina (2.3.46)

CONCLUSION

Kāraka analysis is complicated due to the complex nature
of sentence structure in which several kāraka depends on other
constituents of the sentence. It is only possible after
integration of other modules like subanta analysis, tianta
analysis, samāsa analysis, kdanta analysis, taddhita analysis,
avyaya analysis etc. The results and algorithm presented may
need improvements based on the feedback.

REFERENCES

[1]. A. Bharati, Sangal R., 1990, A karaka based approach to
parsing of Indian languages, proc of the 13 th COLING
vol 3, pp 30-35, Finland.

[2]. Rick Briggs, Knowledge representation in Sanskrit, AI
magazine, 1985.

[3]. Sudhir K Mishra, Girish N Jha, Identifying Verb
Inflections in Sanskrit Morphology, In proc. of SIMPLE
05, IIT Kharagpur, 2005, pp 79-81.

[4]. Sudhir K Mishra, Panini’s Karaka System for Language
Processing, Vidyanidhi Prakashan, New Delhi, 2016.

[5]. Sudhir K Mishra, Aādhyāyīsūtrapāha (Vārtika-
Gaapāha-Dhātupāha-Liṅgānuśāsan-Uādi-
Fisūtrasahita), Vidyanidhi Prakashan, New Delhi, 2016.

[6]. Sudhir K Mishra, Computational Formulation and
mapping of Pāini’s Kāraka-Vibhakti for Machine
Translation, International Journal of Linguistics &
Computing Research, Vol. I, Issue. I, June-2017.

