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ABSTARCT: Finite Automaton is computing device which work as an accepter for a regular language. Similarly, context free language is 
accepted by the machine called Push Down Automat (PDA). Turing Machine is more powerful then these machine as it is capable to accept 
language generated by type 0 grammar. This paper introduces Turing machine and its various variants.  
 
Keywords: Tuning Machine,  
 
 

I. INTRODUCTION 
Alan Mathison Turing (1912-1952), was very influential in 

the development of computer science and providing a 
formalization of the concept of the algorithm and computation 
with his famous Turing machine, which played a significant role 
in the creation of the modern computer. Turing first described 
the Turing machine in his 1936 article “On Computable 
Numbers, with an Application to the Entscheidungs problem” 
[1]. 

Finite Automaton (FA) is an accepter, regular grammar 
generates language and finite automata accept it. In the same 
way context free grammar (CFG) generates language and PDA 
accepts it. But TM is an accepter, generator and transducer; it 
can accept any language (type 0 grammar). 

Anything can be computed by a TM, limitations that hold on 
Tm also provably apply to our real world machines. These 
models gave rise to a lot of theoretical analyses that resulted in a 
profound understanding of aspects of ‘computability’.  

A Turing machine (TM) is an accepting device which 
accepts the languages (recursively enumerable set) generated by 
type 0 grammars. It was invented in 1936 by Alan Turing. 
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Figure 1: An pictorial representation of Tape of TM 

The Turing machine can be thought o as finite control 
connected to a R/W (read/write) head. It has one tape which is 
divided into a number of cells, as shown in figure 1. 

Each cell can store one symbol. The input to and the output 
from the finite state automation are affected by the R/w head 
which can examine one cell at a time  

In one move, the machine examines the present symbol 
under the R/W head on the tape and the present state of an 
automation to determine. 

1. A new symbol to be written on the tape in the cell under 
the R/w head. 

2. A motion of the R/W head along the tape, either the head 
moves one cell left (L) or one cell right (R). 

    3. The next state of the automation. 

FINITE 
CONTROL 

Tape is 
divided 
into cells 
of infinite 
length 
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3. Whether to halt or not. 

II. MATHEMATICAL DEFINITION 
A TM can be formally described as a 7-tuple (Q, X, ∑, δ, q0, 

B, F) 

Q is a finite set of states 

X or ┌(Tao) is the tape alphabet. Toe is a set of symbols 
which are written on tape. 

∑ is the input alphabet 

δ is a transition function; δ : Q × X → Q × X × {Left_shift, 
Right_shift}. 

q0 is the initial state 

B is the blank symbol 

F is the set of final states 

The working of Turing Machine is shown in figure 2. 

 

 

 

   READ/WRITE HEADER 

Figure 2 : Working of TM 

 

δ : Q × X → Q × X × {Left_shift, Right_shift}. 

On a state Q taking input symbol X (Tao) or (┌). After reading 
writing is mandatory. If we do not want to make any changes 
then we write can write the same symbol. Move  is mandatory. 

(L/R)  -> Direction of move left or right. 

 

Example: consider the language L = {anbn : n>=1} then Turing 
Machine can be designed as below: 

 

B a  x a  x a  x b  y b  y b  y B 

 

                R/W Header 

 

          Figure 3 : Pictorial representation of tape 

Header has the capability to move left or right and read and 
writes. So that we can remember how many ‘a’ has been 
processed and how many ‘b’ has been processed. 

‘a’ is translated to ‘x’ and we will move forward until we 
find its corresponding ‘b’ which is then translated to ‘y’. 

‘a’ is translated to ‘x’ and we will move forward until we find its 
corresponding ‘b’ which is then translated  to ‘y’. Transition is 
shown in figure 4. 

            

          a,a,R   a,a,L 

            y,y,R           y,y,L 

      a,x,R      b,y,L 

 

     x,x,R 

    y,y,R 

       B,B,R 

 

 

    y,y,R 

Figure 4: transition diagram of Tm accepting L={anbn : n>=1} 

 When ‘a’ are finished ‘b’ will also be finished. 

 It accepts number of ‘a’ = number of ‘b’. 

III. APPLICATIONS OF TURING MACHINE 
FA is an accepter in which regular grammar generates 

language and FA automata accepts it. CFG generates CFL and 
PDA accepts it. 

Turing machine is an accepter, generator and transducer. 

i. TURING MACHINE AS AN ACCEPTER : It can 
accept   any language. 

ii. TURING MACHINE AS GENERATOR: Like Mealy 
and Moore machine it has the capability to generate 
language/strings. 

iii. TURING MACHINE AS TRANSDUCER  :-  It can 
solve any mathematical function, for example addition, 
subtraction, division, multiplication , log etc 

If a problem is solved by a computer like solving a numerical 
problem or solving an algorithm then that problem can also be 
solved by the Turing machine. 

IV. VARIATIONS OF TURING MACHINE 
Turing machine was further explored and different variations 

are proposed. Some of them are following:  

1. Multi-track Turing machine. 

2. Multi-tape Turing machine. 

3. Non-deterministic Turing machine 

B b c a   x b e B 

Q1 Q2 Q3 

Q4 Q5 Q5 
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4. Linear bounded Turing machine 

5. 2 Stack Turing machine , etc 

MULTI-TRACK TURING MACHINE 
 

Multi-track Turing machines, a specific type of Multi-tape 
Turing machine, contain multiple tracks but just one tape head 
reads and writes on all tracks. A Multi-track Turing machine can 
be formally described as a 6-tuple (Q, X, ∑, δ, q0, F) . Shown in 
figure 5 

• Q is a finite set of states 

• X is the tape alphabet 

• ∑ is the input alphabet 

• δ is a relation on states and symbols where 

• δ(Qi, [a1, a2, a3,....]) = (Qj, [b1, b2, b3,....], Left_shift 
or Right_shift) 

• q0 is the initial state 

F is the set of final states. 

How multi-track Turing machine works.  

 a b  x B  

 a  b  y B  

 B  B  z B  

            R/W Header 

 

 

 Q(b,c,B)=(Qnext,x,y,z) 

Figure 5: Pictorial representation Multi-track TM 

MULTI-TAPE TURING MACHINE 

Multi-tape Turing Machines have multiple tapes where each 
tape is accessed with a separate head. Each head can move 
independently of the other heads. Initially the input is on tape 1 
and others are blank. As shown in figure 6 

Q is a finite set of states 

X is the tape alphabet 

B is the blank symbol 

δ is a relation on states and symbols where 

δ: Q × Xk → Q × (X × {Left_shift, Right_shift, 
No_shift })^k  

Where there is k number of tapes 

q
0
 
i
s
 the initial state 

F is the set of final states. 

Pictorial representation of a Multi-tape Turing machine is shown 
in figure 6 

 

 

 

 

 

 

 

 

 

 

Figure 6: Pictorial representation of Multi-tape TM 

NON-DETERMINISTIC TURING MACHINE 

In a Non-Deterministic Turing Machine, for every state and 
symbol, there are a group of actions the TM can have. So, here 
the transitions are not deterministic. 

A non-deterministic Turing machine can be formally defined 
as a 6-tuple (Q, X, ∑, δ, q0, B, F) where − 

Q is a finite set of states 

a c B  

b a B  

Finite 
control 
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X is the tape alphabet 

∑ is the input alphabet 

δ is a transition function; 

δ : Q × X → P(Q × X × {Left_shift, Right_shift}). 

 q0 is the initial state 

B is the blank symbol 

F is the set of final states 

 LINEAR BOUNDED TURING MACHINE 

The computation is restricted to the constant bounded area. 
The input alphabet contains two special symbols which serve as 
left end markers and right end markers which mean the 
transitions neither move to the left of the left end marker nor to 
the right of the right end marker of the tape. As shown is figure 7 

Q is a finite set of states 

X is the tape alphabet 

∑ is the input alphabet 

q0 is the initial state 

ML is the left end marker 

MR is the right end marker where MR ≠ ML 

δ is a transition function which maps each pair (state, tape 
symbol) to (state, tape symbol, Constant ‘c’) where c can 
be 0 or +1 or – 

F is the set of final states. 

LEFT     RIGHT 

Figure 7: Pictorial representation of Linear Bounded TM 

V. IMPORTANCE OF TURING MACHINE 
The Turing machine can compute anything that can be 

computed. It is the very definition of computation and the 
fundamental tool for reasoning about computers. Modern 
computers are example of such a device and all modern 
programming languages are Turing complete (they can simulate 
any algorithm that could be run on a Turing machine). 

If we want to know the exact functionality of the computer 
and also we know whether a particular problem is solvable or 
not by our   computer so for what we convert that physical 
machine to a mathematical model TM.   

Turing formulated the Turing machine in order to capture 
everything hat computers can do (without using Quantum 
Mechanics, by his own admission). 

The “everything” statement is known today as the Church-
Turing thesis and is widely believed to hold. 

EXAMPLE: - If you take some physical system that 
performs computation, you can simulate it numerically (with 
approximation) on a Turing machine.  

Turing machine is an abstract mathematical idea – not a 
literal wires and metal machine. 

It can always be configured to give a particular output for a 
particular input. But this simple idealized device requires infinite 
memory so it’s not possible to build a physical Turing machine. 

However, a physical device is said to be Turing machine it  
can simulate any algorithm that could be run by the idealized 
Turing machine.  

There are many variations of Turing machine like multi-
header Turing machine, multi-track Turing machine etc. It is 
possible that variations of Turing machine can work on different 
speed (Ex- 2 header can work faster).   

But we cannot change the power of TM. If a language is 
accepted by a variant of TM then it can be accepted by any other 
variation of Turing machine. 

VI. SEVERE CHANGES FROM FA TO TM 

• The header has the capability to read and write. 

• The tape is a two way infinite tape divided into cells. 

• Each cell contains one symbol. 

• ┌ (Tao) is a set of all symbols written on the tape. 

• B [Blank symbol] means empty cells. 

• Transition function, δ : Q × X → Q × X × {Left_shift, 
Right_shift}. 

o On a state Q taking input symbol X or ┌ . After reading 
writing is mandatory. If we do not want to write new symbols or 
to skip, then we can write the same symbol. 

o (L/R) means direction of move. The header can move one 
cell to the left or one cell to the right.     

PDA plus one stack becomes a Turing machine, since PDA has 
one stack but if we add one more stack, it becomes a Turing 
machine. Finite automaton (FA) plus two stacks also becomes a 
Turing machine.  

CONCLUSION 
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Turing Machine is more powerful then finite automaton and 
push down automat as it is capable to accept language generated 
by type 0 grammar. This paper introduces Turing machine and 
its various variants. Turing machine can also work as generator 
and transducer 
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