
ISSN: 2456-8848, Vol. I, Issue. II, Sept-2017

SHAHBAAZ KHAN 19

International Journal
of

Linguistics & Computing Research

Introduction of Turing Machine

Shahbaaz khan
Department of Computer Science And Application

Dr. Harisingh Gour University, Sagar, India
shahbaazkhangolu@yahoo.com

ABSTARCT: Finite Automaton is computing device which work as an accepter for a regular language. Similarly, context free language is
accepted by the machine called Push Down Automat (PDA). Turing Machine is more powerful then these machine as it is capable to accept
language generated by type 0 grammar. This paper introduces Turing machine and its various variants.

Keywords: Tuning Machine,

I. INTRODUCTION
Alan Mathison Turing (1912-1952), was very influential in

the development of computer science and providing a
formalization of the concept of the algorithm and computation
with his famous Turing machine, which played a significant role
in the creation of the modern computer. Turing first described
the Turing machine in his 1936 article “On Computable
Numbers, with an Application to the Entscheidungs problem”
[1].

Finite Automaton (FA) is an accepter, regular grammar
generates language and finite automata accept it. In the same
way context free grammar (CFG) generates language and PDA
accepts it. But TM is an accepter, generator and transducer; it
can accept any language (type 0 grammar).

Anything can be computed by a TM, limitations that hold on
Tm also provably apply to our real world machines. These
models gave rise to a lot of theoretical analyses that resulted in a
profound understanding of aspects of ‘computability’.

A Turing machine (TM) is an accepting device which
accepts the languages (recursively enumerable set) generated by
type 0 grammars. It was invented in 1936 by Alan Turing.

B a1 a2 … b1 b2 B

 READ/WRITE HEADER

Figure 1: An pictorial representation of Tape of TM

The Turing machine can be thought o as finite control
connected to a R/W (read/write) head. It has one tape which is
divided into a number of cells, as shown in figure 1.

Each cell can store one symbol. The input to and the output
from the finite state automation are affected by the R/w head
which can examine one cell at a time

In one move, the machine examines the present symbol
under the R/W head on the tape and the present state of an
automation to determine.

1. A new symbol to be written on the tape in the cell under
the R/w head.

2. A motion of the R/W head along the tape, either the head
moves one cell left (L) or one cell right (R).

 3. The next state of the automation.

FINITE
CONTROL

Tape is
divided
into cells
of infinite
length

International Journal of Linguistics & Computing Research ISSN: 2456-8848, Vol. I, Issue. II, Sept-2017

SHAHBAAZ KHAN 20

3. Whether to halt or not.

II. MATHEMATICAL DEFINITION
A TM can be formally described as a 7-tuple (Q, X, ∑, δ, q0,

B, F)

Q is a finite set of states

X or ┌(Tao) is the tape alphabet. Toe is a set of symbols
which are written on tape.

∑ is the input alphabet

δ is a transition function; δ : Q × X → Q × X × {Left_shift,
Right_shift}.

q0 is the initial state

B is the blank symbol

F is the set of final states

The working of Turing Machine is shown in figure 2.

 READ/WRITE HEADER

Figure 2 : Working of TM

δ : Q × X → Q × X × {Left_shift, Right_shift}.

On a state Q taking input symbol X (Tao) or (┌). After reading
writing is mandatory. If we do not want to make any changes
then we write can write the same symbol. Move is mandatory.

(L/R) -> Direction of move left or right.

Example: consider the language L = {anbn : n>=1} then Turing
Machine can be designed as below:

B a x a x a x b y b y b y B

 R/W Header

 Figure 3 : Pictorial representation of tape

Header has the capability to move left or right and read and
writes. So that we can remember how many ‘a’ has been
processed and how many ‘b’ has been processed.

‘a’ is translated to ‘x’ and we will move forward until we
find its corresponding ‘b’ which is then translated to ‘y’.

‘a’ is translated to ‘x’ and we will move forward until we find its
corresponding ‘b’ which is then translated to ‘y’. Transition is
shown in figure 4.

 a,a,R a,a,L

 y,y,R y,y,L

 a,x,R b,y,L

 x,x,R

 y,y,R

 B,B,R

 y,y,R

Figure 4: transition diagram of Tm accepting L={anbn : n>=1}

 When ‘a’ are finished ‘b’ will also be finished.

 It accepts number of ‘a’ = number of ‘b’.

III. APPLICATIONS OF TURING MACHINE
FA is an accepter in which regular grammar generates

language and FA automata accepts it. CFG generates CFL and
PDA accepts it.

Turing machine is an accepter, generator and transducer.

i. TURING MACHINE AS AN ACCEPTER : It can
accept any language.

ii. TURING MACHINE AS GENERATOR: Like Mealy
and Moore machine it has the capability to generate
language/strings.

iii. TURING MACHINE AS TRANSDUCER :- It can
solve any mathematical function, for example addition,
subtraction, division, multiplication , log etc

If a problem is solved by a computer like solving a numerical
problem or solving an algorithm then that problem can also be
solved by the Turing machine.

IV. VARIATIONS OF TURING MACHINE
Turing machine was further explored and different variations

are proposed. Some of them are following:

1. Multi-track Turing machine.

2. Multi-tape Turing machine.

3. Non-deterministic Turing machine

B b c a x b e B

Q1 Q2 Q3

Q4 Q5 Q5

International Journal of Linguistics & Computing Research ISSN: 2456-8848, Vol. I, Issue. II, Sept-2017

SHAHBAAZ KHAN 21

4. Linear bounded Turing machine

5. 2 Stack Turing machine , etc

MULTI-TRACK TURING MACHINE

Multi-track Turing machines, a specific type of Multi-tape
Turing machine, contain multiple tracks but just one tape head
reads and writes on all tracks. A Multi-track Turing machine can
be formally described as a 6-tuple (Q, X, ∑, δ, q0, F) . Shown in
figure 5

• Q is a finite set of states

• X is the tape alphabet

• ∑ is the input alphabet

• δ is a relation on states and symbols where

• δ(Qi, [a1, a2, a3,....]) = (Qj, [b1, b2, b3,....], Left_shift
or Right_shift)

• q0 is the initial state

F is the set of final states.

How multi-track Turing machine works.

 a b x B

 a b y B

 B B z B

 R/W Header

 Q(b,c,B)=(Qnext,x,y,z)

Figure 5: Pictorial representation Multi-track TM

MULTI-TAPE TURING MACHINE

Multi-tape Turing Machines have multiple tapes where each
tape is accessed with a separate head. Each head can move
independently of the other heads. Initially the input is on tape 1
and others are blank. As shown in figure 6

Q is a finite set of states

X is the tape alphabet

B is the blank symbol

δ is a relation on states and symbols where

δ: Q × Xk → Q × (X × {Left_shift, Right_shift,
No_shift })^k

Where there is k number of tapes

q
0

i
s
 the initial state

F is the set of final states.

Pictorial representation of a Multi-tape Turing machine is shown
in figure 6

Figure 6: Pictorial representation of Multi-tape TM

NON-DETERMINISTIC TURING MACHINE

In a Non-Deterministic Turing Machine, for every state and
symbol, there are a group of actions the TM can have. So, here
the transitions are not deterministic.

A non-deterministic Turing machine can be formally defined
as a 6-tuple (Q, X, ∑, δ, q0, B, F) where −

Q is a finite set of states

a c B

b a B

Finite
control

International Journal of Linguistics & Computing Research ISSN: 2456-8848, Vol. I, Issue. II, Sept-2017

SHAHBAAZ KHAN 22

X is the tape alphabet

∑ is the input alphabet

δ is a transition function;

δ : Q × X → P(Q × X × {Left_shift, Right_shift}).

 q0 is the initial state

B is the blank symbol

F is the set of final states

 LINEAR BOUNDED TURING MACHINE

The computation is restricted to the constant bounded area.
The input alphabet contains two special symbols which serve as
left end markers and right end markers which mean the
transitions neither move to the left of the left end marker nor to
the right of the right end marker of the tape. As shown is figure 7

Q is a finite set of states

X is the tape alphabet

∑ is the input alphabet

q0 is the initial state

ML is the left end marker

MR is the right end marker where MR ≠ ML

δ is a transition function which maps each pair (state, tape
symbol) to (state, tape symbol, Constant ‘c’) where c can
be 0 or +1 or –

F is the set of final states.

LEFT RIGHT

Figure 7: Pictorial representation of Linear Bounded TM

V. IMPORTANCE OF TURING MACHINE
The Turing machine can compute anything that can be

computed. It is the very definition of computation and the
fundamental tool for reasoning about computers. Modern
computers are example of such a device and all modern
programming languages are Turing complete (they can simulate
any algorithm that could be run on a Turing machine).

If we want to know the exact functionality of the computer
and also we know whether a particular problem is solvable or
not by our computer so for what we convert that physical
machine to a mathematical model TM.

Turing formulated the Turing machine in order to capture
everything hat computers can do (without using Quantum
Mechanics, by his own admission).

The “everything” statement is known today as the Church-
Turing thesis and is widely believed to hold.

EXAMPLE: - If you take some physical system that
performs computation, you can simulate it numerically (with
approximation) on a Turing machine.

Turing machine is an abstract mathematical idea – not a
literal wires and metal machine.

It can always be configured to give a particular output for a
particular input. But this simple idealized device requires infinite
memory so it’s not possible to build a physical Turing machine.

However, a physical device is said to be Turing machine it
can simulate any algorithm that could be run by the idealized
Turing machine.

There are many variations of Turing machine like multi-
header Turing machine, multi-track Turing machine etc. It is
possible that variations of Turing machine can work on different
speed (Ex- 2 header can work faster).

But we cannot change the power of TM. If a language is
accepted by a variant of TM then it can be accepted by any other
variation of Turing machine.

VI. SEVERE CHANGES FROM FA TO TM

• The header has the capability to read and write.

• The tape is a two way infinite tape divided into cells.

• Each cell contains one symbol.

• ┌ (Tao) is a set of all symbols written on the tape.

• B [Blank symbol] means empty cells.

• Transition function, δ : Q × X → Q × X × {Left_shift,
Right_shift}.

o On a state Q taking input symbol X or ┌ . After reading
writing is mandatory. If we do not want to write new symbols or
to skip, then we can write the same symbol.

o (L/R) means direction of move. The header can move one
cell to the left or one cell to the right.

PDA plus one stack becomes a Turing machine, since PDA has
one stack but if we add one more stack, it becomes a Turing
machine. Finite automaton (FA) plus two stacks also becomes a
Turing machine.

CONCLUSION

International Journal of Linguistics & Computing Research ISSN: 2456-8848, Vol. I, Issue. II, Sept-2017

SHAHBAAZ KHAN 23

Turing Machine is more powerful then finite automaton and
push down automat as it is capable to accept language generated
by type 0 grammar. This paper introduces Turing machine and
its various variants. Turing machine can also work as generator
and transducer

REFERENCE

[1]. Turing, A.M. (1936), "On Computable Numbers, with an
Application to the Entscheidungs problem", Proceedings
of the London Mathematical Society, 2 (published 1937),
42 (1), pp. 230–65.

[2]. Aho, A. V., Lam, M. S., R. Sethi, R., et al. 2007.
Compilers: Principles, Techniques, and Tools. 2nd ed.,
Addison-Wesley, New York.

[3]. Hopcroft, J. E., R. Motwani, R., and Ullman, J. D. 2007.
Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, New York.

[4]. Linz, P., 2010. An Introduction to Formal Languages and
Automata. 4th ed., Narosa Publishing House, New Delhi.

[5]. Goddard, W. 2010. Introducing the Theory of
Computation. First India Edition, Jones and Bartlett India
Pvt. Ltd. 1)

[6]. Mishra K.L.P, CHANDRASEKARAN N.: Theory of
Computer Science: Automata, languages and
Computation.

