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Abstract— In early 1980’s Pawalak introduced the concept of Rough Set Theory. In very short span of time this theory become popular in soft 
computing. Rough set theory is associated with many other theories dealing with imperfect and vagueness data. This paper explains the Rough 
set theory and its basic concepts and has been illustrated with the help of example. 
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I. INTRODUCTION 

Rough Set theory introduced by Pawlak in early 1980’s, is a 
technique for dealing with uncertainty and to identify cause-
effect relationships in databases as a tool for data mining and 
database learning [1]. It has also been used for improved 
information retrieval and for uncertainty management in 
relational databases. Rough set Theory deals with those dataset 
in which some of the objects having same values for all 
conditional attribute but belongs to the two or more different 
classes. In this paper the concepts of RST are presented, defined 
and illustrated with the use of a representative Fruit dataset.  

II. BASIC CONCEPTS OF RST 

To understand the concepts of RST, we need to know some 
basic concepts. The basis of RST is information system and 
decision system. To explain the concepts fruit dataset which is 
given in table 1 has been used. 

Fruit dataset has sixteen observations and each observation 
has five attributes namely skin, color, size, flesh and Eatable. 
Skin attribute describe the types of skin of the fruit, color 
attribute gives the color of the fruit. Size attribute give the size 
of fruit and by flesh attribute we can know the type flesh of the 
fruit. Eatable attribute inform us whether the fruit is café for 
eating or not. The value of eatable attribute is governed by the 
value of rest of rest of the attributes. 

 
 

Table 1: Fruit Data 
 

   Object Skin  Color Size Flesh Eatable 
O1 hairy brown large hard safe 
O2 hairy green large hard safe 
O3 smooth red large soft danger 
O4 hairy green large soft safe 
O5 hairy red small hard safe 
O6 smooth red small hard safe 
O7 smooth brown small hard safe 
O8 hairy green small soft danger 
O9 smooth green small hard danger 
O10 hairy red large hard safe 
O11 smooth brown large soft safe 
O12 smooth green small soft danger 
O13 hairy red small soft safe 
O14 smooth red large hard danger 
O15 smooth red small hard safe 
O16 hairy green small hard danger 

 
A. Information System:  

A 3-tuple ),,( aVAUS   is called an information system, 

where U is a non-empty finite set of objects called the universe, 
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A is a non-empty finite set of attributes, for ,Aa  aV  is the 

value set of the attribute a. Table 2 is an example of information 
system. This table has only informative attributes no decision 
making attribute.  

 

Table 2: Information System 
 

   Object Skin  Color Size Flesh 
O1 hairy brown large hard 
O2 hairy green large hard 
O3 smooth red large soft 
O4 hairy green large soft 
O5 hairy red small hard 
O6 smooth red small hard 
O7 smooth brown small hard 
O8 hairy green small soft 
O9 smooth green small hard 
O10 hairy red large hard 
O11 smooth brown large soft 
O12 smooth green small soft 
O13 hairy red small soft 
O14 smooth red large hard 
O15 smooth red small hard 
O16 hairy green small hard 

 

B. Decision System:  

A Decision system is any information system of the form
),,( aVDAUS  , where DA  , D the set of decision 

attributes and A the set of conditional attributes. The fruit 
dataset as given in the table 3 is an example of a decision 
system. This table has decision making attribute in addition to 
informative attributes. 

 

Table 3: Fruit Data as Decision System 
 

   Object Skin  Color Size Flesh Eatable 
O1 hairy brown large hard safe 
O2 hairy green large hard safe 
O3 smooth red large soft danger 
O4 hairy green large soft safe 
O5 hairy red small hard safe 
O6 smooth red small hard safe 
O7 smooth brown small hard safe 
O8 hairy green small soft danger 
O9 smooth green small hard danger 
O10 hairy red large hard safe 
O11 smooth brown large soft safe 
O12 smooth green small soft danger 
O13 hairy red small soft safe 
O14 smooth red large hard danger 
O15 smooth red small hard safe 
O16 hairy green small hard danger 

 
Following is the description of the fruit dataset as a decision 

system:  

U= { O1 , O2 , O3 , O4 , O5 , O6 , O7 , O8 , O9 , O10 , O11 , O12 , 
O13 , O14 , O15 , O16 } 

A = {Skin, Color, Size, Flesh} 
D = {Decision} 
VSkin= {hairy, smooth} 
VColor= {brown, green, red} 
VSize= {small, large} 
VFlesh= {soft, hard} 
VDecision={safe, danger} 

C. Indiscernibility Relation:  

The indiscernibility relation is at the core of rough set theory. 
All concepts of rough set theory are based on indiscernibility 
relation. Any two objects are said to be indiscernible if the 
vectors representing the two objects are identical i.e. the two 
tuples are identical. Two objects may be indiscernible with 
respect to BA if the attribute values of the attributes in B for 
the two objects are identical. Indiscernibility relation in on 
information system S denoted by INDS(B) for any BA is a 
relation on U defined as,  

    INDS(B) ={(y, y´ )U X U |  a B, a(y)= a(y´)}      … (1) 

If (y, y´)   INDS(B), then objects y and y´ are indiscernible 
from each other with respect to all attributes in B then INDS(B) 
is called the B-indiscernibility relation. It is trivial to prove that 
INDS(B) for any BA satisfies the reflexivity, symmetricity and 
transitivity conditions.  Therefore, using the equivalence relation 
INDS(B), the set of equivalence classes yields partition of the 

universe U denoted by 
)(BIND

U

S

. The equivalence class of y 

U with respect to B-indiscernibility relation is denoted by [y]B. 

The relation INDS(B) when applied to the entire universe may 
also be indicated as IND(B). 

Consider B= {Skin, Color, Size, Flesh}, B1= {Skin, Color, 
Size}, B2= {Skin, Color, Flesh}, B3= {Skin, Color}. The 
indiscernibility relations corresponding to these sets of attributes 
are illustrated below. In the following examples of 
indiscernibility relation only the distinct pairs are exhibited 
while trivial cases, the pairs indicating reflexivity i.e. (Oi, Oi), 
are not included.  

INDS(B) ={(O6,O15), (O15,O6)} 

INDS(B1) ={(O2,O4), (O3,O14), (O4,O2), (O5,O13), (O6,O15), 
(O8,O16), (O9,O12), (O12,O9), (O13,O5), (O14,O3), 
(O15,O6), (O16,O8) } 

INDS(B2) ={(O2,O16), (O4,O8), (O5,O10) (O6,O14) , (O6,O15), 
(O8,O4), (O10,O5), (O14,O6), (O14,O15), (O15,O6), 
(O15,O14) (O16,O2)} 

INDS(B3) ={(O2,O4), (O2,O8), (O2,O16), (O3,O6), (O3,O14), 
(O3,O15),  (O4,O2), (O4,O8), (O4,O16), (O5,O10), 
(O5,O13), (O6,O3), (O6,O14), (O6,O15),  (O7,O11), 
(O8,O2), (O8,O4), (O8,O16), (O9,O12), (O10,O5), 
(O10,O13), (O11,O7), (O12,O9), (O13,O5), (O13,O10),  
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(O14,O3), (O14,O6), (O14,O15), (O15,O3), (O15,O6), 
(O15,O14), (O16,O2), (O16,O4), (O16,O8)} 

Once the concept of information system, decision system and 
indiscernibility relation is define we can define Rough Set 
Tehory. 

III. ROUGH SET 

Based on the indiscernibility relation we define lower and 
upper approximation and boundary region. If for any set 
(dataset) boundary region is not empty then such set is rough set. 

A. Lower and Upper Approximation:  

Consider a concept X  U. The dataset U is described by the 
values of all the attributes in A. A description of X may also be 
possible based on the information of B  A. The lower and 
upper approximations of the concept X with respect to the B 
offer a formulation for such a description. The B-lower 
approximation and B-upper approximation of X are represented 
as )( XB   and )( XB   respectively and are defined by, 

}][:{)( XxxXB B    and, 

}][:{)(  XxxXB B             ….. (2) 

The approximation regions XB  and XB  of the concept 
X are defined using the equivalence classes of the 
indiscernibility relation IND(B). The objects in )( XB  with 
certainty are the members of X (certainly describe X) on the 
basis of the knowledge in B, while the objects in )( XB  are 
possible members of X (possibly describe X) based on the 
knowledge in B.  

Consider the decision system represented by fruit dataset and 
let X= {O1, O2, O4, O6, O7, O9, O11, O14} and let B= {Skin, 
color} then the equivalence classes of U = {O1, O2 , …, O16} 
with respect to B are given by, 

[O1]B = {O1}  
[O2]B = {O2, O4, O8, O16}  
[O3]B = {O3, O6, O14, O15} 
[O4]B = {O2, O4, O8, O16}  
[O5]B = {O5, O10, O13} 
[O6]B = {O3, O6, O14, O15} 
[O7]B = {O7, O11}  
[O8]B = {O2, O4, O8, O16}  
[O9]B = {O9, O12} 
[O10]B = {O5, O10, O13} 
[O11]B = {O7, O11} 
[O12]B = {O9, O12} 
[O13]B = {O5, O10, O13} 
[O14]B = {O3, O6, O14, O15} 
[O15]B = {O3, O6, O14, O15} 
[O16]B = {O2, O4, O8, O16}  

 

The partition of U with respect to the equivalence relation 
IND(B) for B = {Skin, color} is, 

U / IND(B) ={{O1}, {O2, O4, O8, O16}, {O3, O6, O14, O15}, 
{O5, O10, O13}, {O7, O11}, {O9, O12}}  

In the above example the equivalence classes which are 
certainly contained in the X are [O1]B, [O7]B and [O11]B. 
Therefore, the lower approximation of X with respect to B is 

}O,O,O{ 1171XB . 

For the objects O1, O2 ,O3,O4,O6,O7,O8,O9,O11,O12,O14,O15, 
and O16, it may be observed that [O1]B ∩ X ≠ Φ, [O2]B∩ X ≠ Φ, 
[O3]B∩ X ≠ Φ, [O4]B∩ X ≠ Φ, [O6]B∩ X ≠ Φ, [O7]B∩ X ≠ Φ, 
[O8]B∩ X ≠ Φ, [O9]B∩ X ≠ Φ, [O11]B∩ X ≠ Φ, [O12]B∩ X ≠ Φ, 
[O14]B∩ X ≠ Φ, [O15]B∩ X ≠ Φ and  [O16]B∩ X ≠ Φ therefore, the 
upper approximation of X with respect to B is computed to be, 

 

}16O,15O,14O,12O,11O,9O,8O,7O,6O,4O,3O,2O,1O{XB
 

Properties of Lower and Upper Approximation: 
1. )()( XBXXB   

2. UUBUBBB  )()(,)()(  

3. )()()( YBXBYXB    

4. )()()( YBXBYXB    

5. )()( and )()( implies YBXBYBXBYX   

6. )()()( YBXBYXB    

7. )()()( YBXBYXB    

8. )())(())(( XBXBBXBB   

9. )())(())(( XBXBBXBB   

B. Boundary Region:  

The set XBXBXBBN )(  is called the boundary 
region of X, which consists of those objects whose membership 
to X is not decisive on the basis of the knowledge in B. The set  

XBU   is said to be the B-outside region of X. It consists of 
objects which are with certainty classified as not belonging to X 
on the basis of knowledge in B.  

In the previous example, X= {O1, O2, O4, O6, O7, O9, O11, 
O14} and B= {Skin, color}. Since the lower and upper 
approximations of X with respect to B are, 

}O,O,O{)( 1171XB  

}O,O,O,OO,O,O,O,O,O,O,O,O{)( 161514121198764321XB

 
The boundary region may be obtained,  

}O,O,O,O,O,O,O,O,O,O{)( 16151412986432XBN B
 

C. Rough Set:  

A set is said to be rough if the boundary region is non-empty 
and crisp otherwise. 

 In the above example since BNB(X)   therefore, the set 
X is a rough set.  
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IV. ROUGH SET THEORY 

A. Positive Region:  

Rough Set Theory offers tools to measure the degree of 
significance of attributes and the dependencies amongst them. 
For a given set of conditional attributes B, the B-positive region 
POSB(D) with respect to the relation IND(D) is defined as, 

}][:{)( DB xXXBDPOS              ….. (3) 

The positive region POSB(D) contains all the objects in U 
that can be classified without any error into distinct classes 
defined by IND(D), based only on information in B. Greater the 
cardinality of POSB(D) higher is the significance of the 
attributes in the set B with respect to D.  

B. Rough Membership Function:  

The Rough membership function )y(B
X  is a tool to 

express how certainly an element y belongs to the concept X by 
the information about the element with respect to the set of 
attributes B. The Rough membership function is also used as a 
measure of significance of an attribute and is defined by,  

)]([

)][(
)(

)(

)(

BIND

BINDB
X ycard

yXcard
y


                       …. (4) 

C. Reduct:  

A reduct is a minimal subset of attributes with the same 
capability of object classification as the set of all attributes.  

V. REDUCT COMPUTATION 

Reduct is one of the most important concepts in application 
of rough set theory in data mining. A reduct is the minimal set of 
attributes preserving classification accuracy of the original 
dataset. The problem to compute the reducts of a dataset is 
similar to the problem of feature selection. All the reducts of a 
dataset are obtained by constructing a discernibility function 
from the dataset [2]. It has been shown that the problems of 
finding minimal reduct and all reducts are NP-hard problems. 
Therefore, efficient methods to solve this NP-hard problem play 
an important role in the development of rough set-based data 
mining. Some efficient algorithms with heuristics, GA approach, 
etc. have also been proposed. Starzyk has used strong 
equivalence to simplify discernibility function [Starzyk1998]. 
However, this is still an open problem in rough set theory. 

The conventional reduct computational algorithms fall into 
two categories: the reduction algorithms based on heuristic 
information and the reduction algorithms based on random 
strategies. Nevertheless, these algorithms do not guarantee to 
find a complete set of reducts for the dataset. 

A. Heuristic Algorithms 

Johnson’s strategy [3] is based on Johnson approximation 
algorithm for computing minimal prime implicant of any 
Boolean function in conjunctive normal form (CNF) formula. 
The main idea of the algorithm is to find an attribute discerning 
the largest number of pairs of objects, i.e., an attribute that 

occurs most in the entries of discernibility matrix. This 
algorithm proceeds until a reduct set is found. The time 
complexity of this algorithm is O(|A|2 |U|2) and the space 
complexity of this algorithm is O(|A| |U|2), where A is the set of 
attributes and U is database.  

Jue Wang [4] has proposed an attributes reduction algorithm 
based on significance of attributes in discernibility matrix. In 
this algorithm significance of attributes is define as the attributes 
frequency in discernibility matrix. Hence algorithm regards the 
number of occurrences of each attribute as the significance of 
each attribute. The algorithm selects the attribute with the largest 
frequency, and deletes the elements involved with the selected 
attribute in discernibility matrix. Then the frequency of other 
attributes is computed. The algorithm continues to select and 
compute the frequency of remaining attributes until a reduct set 
is found. The time complexity of this algorithm is also O(|A|2 

|U|2) and the space complexity of this algorithm is also O(|A| 
|U|2). 

By making use of attribute frequency information in 
discernibility matrix, Keyun Hu [5] has developed a feature 
ranking mechanism. Hu has proposed the algorithm using 
feature ranking as heuristics for reduct computation. The time 
complexity of this algorithm is O((|A|+log|U|) |U|2) and the 
space complexity of this algorithm is O(|A| |U|2).  

X. Hu et al. [6] have proposed a new rough sets model and 
defined the core and reducts based on relational algebra using 
efficient set-oriented database operations. They presented two 
new algorithms to calculate core and reducts respectively, for 
feature selections. However, the time complexity of the 
algorithm is O(|A|2|U|) for the best case in spite of the hashing 
and indexing mechanism provided by the database systems. 

B. Random Reduct Algorithms: 

Vinterbo [7] has formulated the rough set based attribute 
reduction as ‘minimal hitting set’ problem. He has defined an r-
approximate hitting set as a set that intersects with at least a 
fraction r of given sets. Approximations of reducts from rough 
set theory are defined by means of minimal r-approximate 
hitting sets. In this method r-approximate hitting sets is 
computed using GA. The time complexity of the algorithm is 
O(|A|2 |U| log |U|) and the space complexity is O(|U|). 
Obviously, reducts obtained by this algorithm are not guaranteed 
to be complete. 

Bazan [8] opines that the above methods do not take into 
account the fact that part of reduct set is chaotic i.e. it is not 
stable in randomly chosen samples of a given decision table. He 
introduced the notion of dynamic reduct. Dynamic reducts are in 
some sense the most stable reducts of the given decision table, 
i.e., they are the most frequently appearing reducts in subtables 
created by random sampling of a given decision table. 
Computation of reduct of variable size dynamically can be 
extremely computationally intensive, even for decision tables of 
moderately size. This algorithm is quite stable in most cases, yet 
it does not compute all reducts.  

QuickReduct algorithm [9, 10] is an attempt to calculate a 
minimal reduct without exhaustively generating all possible 
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subsets. Starting with an empty set the algorithm constructs the 
set P by adding the attributes with highest value of the attribute 
dependency p(D), for D the decision attribute,  until a maximum 
possible value is reached for the dataset (usually 1). Where  

|U|

|)D(POS|
)D(

p
p                             …. (5) 

CONCLUSION 

This paper presents the basics of the Rough set theory 
introduced by Pawalak in early 1980’s. Basic concepts of Rough 
Set theory have been illustrated with the help of example. the 
concept of Rough Set Theory. Rough set theory is associated 
with many other theories dealing with imperfect and vagueness 
data.  
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